

Utilizing Mississippi River Sediments to Restore Coastal Wetlands

Jerry Carroll, P.E. CPRA Engineering Division

July 31, 2013

committed to our coast

Projects Included:

Keystone of the 2012 Master Plan: Reconnecting the Mississippi River

Sediment Diversion

Mid Barataria Sediment Diversion

Diversion Location:

•Plaquemines Parish; 8 mi E of Lafitte, LA

•RM 60.7

Problems in Outfall Area:

•Land Loss, Habitat Shift, Saltwater Intrusion, Subsidence, Hydrology alteration, Sediment deprivation

Diversion Size:

 75,000 cfs Sediment Diversion Complex

Components of Sediment Diversion:

 Inlet structure (Gate and Controls), Channel, guide levees, outlet structure

Total Cost:

• \$571,00,000 E&D and Construction

Diversion size

75,000 cfs – Dr. Ehab Meselhe's results (sediment/water ratios)

	Mississippi River (Main Stem)	Diversion Channel OA- RM60.2- 15K	Diversion Channel ND- RM60.7- 15K	Diversion Channel MA- RM60.7- 45K	Diversion Channel ND- RM60.7- 45K	Diversion Channel ND- RM60.7- 75K	
Water Discharge (m3/s)	19,821	322	361	955	937	1,725	
Water Discharge (CFS)	700,000	11,369	12,733	33,735	33,075	60,918	
							I .
Sediment Load (metric tons/d) - 32 Micron	233, 539	2,786	4, 189	15,306	13,819	24,789	
Sediment Load (metric tons/d) - 63 Micron	10,839	104	188	663	619	1,156	
Sediment Load (metric tons/d) - 96 Micron	21,816	144	335	1,230	1,150	2,357	
Sediment Load (metric tons/d) - 125 Micron	34,437	133	420	1,637	1,675	3,726	
Sediment Load (metric tons/d) - 250 Micron	23,460	2	44	218	528	1,607	
Total 63 - 250 Micron Load (metric tond/d)	00,554	383	987	3,748	3,972	8,847	
Sediment/Water Ratio (SWR)		0.26	0.60	0.85	0.93	1.12	

Location

Based on an intensive Mississippi River data collection and modeling effort, the location of *the intake channel and the outfall channel alignment* has been *carefully selected at river mile 60.7 above Head of Passes to optimize the capture of sediment* from the river.

Design of Construction Features

Currently bringing the following to a 15% to 30% Level:

- Dredging plan for excavation in front of flume
- Revetment Removal
- MR&T Levee Tie-In
- Flume
- Structure

- Channel & Guide Levees
- Highway 23 Detour
- Highway 23 Bridge
- Pump station/Drainage Plan
- Back Hurricane Levee Tie-in

Restoration via Hydraulic Dredging

West Belle Pass Barrier Headland Restoration

Inland Dredging - Marsh Restoration/Creation

Dedicated Dredging at Barataria Landbridge

Offshore Dredging - Barrier Island Restoration

Pelican Island Restoration

Coastal Protection and Restoration Authority of Louisiana

Dredging from the Mississippi River

Renewable Sediment Sources

Renewable Sediment Sources

Alliance Anchorage Borrow Site

Alliance Anchorage Borrow Site

65 RM

BORROW AREA

Alliance Anchorage

CUT TO 90 ft	CUT TO 70 ft	DRAWINGS	
Area	124 acres		
Length	7010 feet		
Width	600 - 900 feet		
Thickness	30 to 40 feet		
Volume	6.5 MCY		
8			

DRAFT Investigation of Potential Mississippi River Borrow Areas

Carlisle

Mississippi River Borrow Area Design Criteria

- USACE Mississippi River Permissible Dredging Restrictions and dredging offsets.
- Navigational Safety Concerns- MNSA.
- Proposed USACE Saltwater Barrier Sill Coordination.
- Existing Revetment offset requirements.
- Mississippi River Levee Crossing Requirements.
- Mississippi River Stage Seasonal Variation.
- Required Volume for Marsh Fill Areas.
- Required Volume for dredging- Cut Volume typically 1.3 -1.5 times fill volume.
- Need additional volume due to unforeseen conditions- debris, anomalies, etc.
- Monitor Mississippi River Borrow Infilling rates.

Observed <u>Refill Rates</u> after BA-39 Dredging

Borrow Area Refill Rates

Alliance Anchorage	1 yr	~3 yrs
SWB Measured -60 ft cut (1.1 Mcy)	72% (0.8 Mcy)	93%
BA-39 Measured -60 to -70 ft cut (3.9 Mcy)	45% (1.7 Mcy)	?
LDSP Modeled -70 ft cut (3.4 Mcy)	63% (2.4 Mcy) +/- 16% (0.6Mcy)	90%
LDSP Modeled -90 ft cut (6.5 Mcy)	67% (4.4 Mcy) +/- 20% (1.3 Mcy)	95%

3 Sites dredged to -90 ft	1 yr	~3 yrs
Wills Point Anchorage	47%	77%
Alliance Anchorage	42%	80%
Alliance South	20%	40%

Current Projects Utilizing Mississippi River Sediment

Marsh Creation at Bayou Dupont

Marsh Creation

Dedicated Dredging at the Barataria Landbridge

Project Overview

- Largest CPRA Marsh Creation Project to utilize Mississippi River sediment
- Sediment dredged and pumped through over 9 miles of pipeline
- Volume of Sediment: 4,516,522 CY
- Acres Created: 650 acres
- **Cost:** \$32,697,879

Pipeline Conveyance

Construction

Construction

Construction

Mississippi River Long Distance Sediment Pipeline/Bayou Dupont Ridge/Marsh

Linking Existing & Proposed Projects to Re-establish Backbone of Barataria Landbridge

Mississippi River Long Distance Sediment Pipeline/Bayou Dupont Ridge/Marsh

Project Objectives

- Design and construct an <u>efficient sediment delivery</u> pipeline system from a <u>renewable resource</u> in the Mississippi River to strategic locations in Barataria Basin.
- The LDSP project is designed to:
 - Facilitate large-scale marsh creation in Barataria Basin by reducing future costs
 - Provide immediate restoration to natural landscape features: *Ridge and Marsh Complex*
 - Re-establish multiple benefits to the landscape by combining existing and new projects (ridge, marsh creation, freshwater introduction)

Design Quantities

Project	Marsh Area (acres)	Fill Volume (Mcy)	Dredged Volume (Mcy)
Bayou Dupont (BA-48)	Create 196 Nourish 93 Ridge 20	2.15	3.23
MR Long Distance Sediment Pipeline	338	2.64	3.95
Total	647	4.8	7.2

Barrier Island Restoration

Pelican Island Restoration

Project Overview

- Historical Erosion Rates:
 - ~16.5 ft/yr
 - Near term rate over 49 ft/yr
- Acres Created/Restored: 640 acres
- Volume of Sediment: 3,393,500 CY
- Sediment dredged from the Mississippi River and pumped over 22 miles through pipeline (includes two levees and a harbor canal)
- **Cost:** \$46,482,913
- Completion Date: September 2013

Unique Aspects of the Project

- Excavation of riverine sediments in one of the nations busiest navigational waterways
- Delivery of riverine sediments over 22 miles
- A conveyance corridors that requires:
 - Micro-tunneling casing pipe installation under two highways
 - Crossing of 2 levees and a harbor canal
 - Pipeline installation along 18 miles of the Empire Waterway
 - Providing 6 navigational crossings for commercial and recreational use over sediment pipeline

Scofield Island Typical Section

Pipeline Conveyance

Construction

Construction

Construction

Construction

Construction

Construction

727.520.8181 www.aerophoto.com Scofield Island

Image #130701 6184 Date 07.01.13

Shell Island Restoration

Project Overview

- Acres Created/Restored: 307 acres
- Volume of Sediment: 2,525,000 CY
- Sediment dredged from the Mississippi River and pumped over 22 miles through pipeline (includes two levees and a harbor canal)
- **Cost:** \$43,000,000
- Completion Date: Fall 2013

Photo 727.520.818

Shell Island East Barrier Island Restoration Image # 130401 (Date 04.01.13

Shell Island - Project Plan View

Construction Cross-Sections: Stations 133+49 and 138+79

Shell Island Restoration

Construction

Shell Island East Barrier Island Restoration

Image # 130504 6205 Date 05.04.13

Shell Island Restoration

Construction

Shell Island East Barrier Island Restoration

Image #130701 6180 Date 07.01.13

QUESTIONS

Jerry Carroll, P.E. jerry.carroll@la.gov

